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Abstract

We consider a three-dimensional conductor containing an inclusion that can be
represented as a cylinder with a fixed axis and a small basis. As the size of the
basis of the cylinder approaches zero, the voltage perturbation can be described
by means of a polarization tensor. We give an explicit characterization of the
polarization tensor of cylindrical inclusions in terms of the polarization tensor
of its base, and we use this result to show that the axis of the inclusion can be
uniquely determined by boundary values of the voltage perturbation. We also
present a reconstruction algorithm and some numerical simulations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Let � be an open bounded smooth domain in R
3 occupied by a conducting material, and let

γ0 : � → R
+ represent the conductivity in �.

If we assign a current g on ∂� such that
∫
∂ω

g dσ = 0, the voltage potential generated by
this current is the solution u0 to⎧⎪⎪⎪⎨⎪⎪⎪⎩

div(γ0∇u0) = 0 in �,

γ0
∂u0

∂n
= g on ∂�,∫

∂�

u0 dσ = 0,

(1)

where the last condition ensures the unique determination of the solution.
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Let us suppose that � contains a small inclusion ωε , made of a different material with
conductivity γ1 : � → R

+. The perturbed conductivity is given by

γε(x) =
{

γ0(x) x ∈ �\ωε,

γ1(x) x ∈ ωε.
(2)

If we apply the same current g on the boundary of the body containing the inclusion, the
resulting potential is the solution uε to the boundary value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

div(γε∇uε) = 0 in �,

γε

∂uε

∂n
= g on ∂�,∫

∂�

uε dσ = 0.

(3)

In recent years, a considerable amount of work has been dedicated to the case of small
inclusions, that is, to subsets ωε whose Lebesgue measure tends to zero with ε. When this
happens, the perturbation of the voltage potential is very small, in the sense that uε converges to
u0 in the H 1(�) norm. A number of asymptotic formulae have been proved for the asymptotic
expansion of (uε − u0)|∂ω

with respect to ε for a variety of geometries. We recall here a
general, geometry independent, result due to Capdeboscq and Vogelius [9]. Assume that

|ωε |−11ωε
(·) converges in the sense of measure to μ when |ωε | → 0. (4)

Let N denote the Neumann function of the unperturbed domain: given y ∈ �, let N(·, y)

be the solution to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

divx(γ0(x)∇xN(x, y)) = δy(x) for x ∈ �,

γ0(x)
∂N

∂nx

(x, y) = 1

|∂�| for x ∈ ∂�,∫
∂ω

N(x, y) dσx = 0.

(5)

This function may be extended by continuity to ∂� and may also be defined as the solution to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

divx(γ0(x)∇xN(x, y)) = 0 for x ∈ �,

γ0(x)
∂N

∂nx

(x, y) = −δy +
1

|∂�| for x ∈ ∂�,∫
∂ω

N(x, y) dσx = 0.

The main result in [9] is the following:

Theorem 1.1. Assume (4) holds. There exists a tensor {Mij }3
i,j=1 ∈ L2(�, dμ) such that, for

g ∈ H−1/2(∂�) satisfying
∫
∂ω

g dσ = 0, if we denote by uε and u0 the solutions to boundary
value problems (1) and (3) respectively, we have that, for y ∈ ∂�,

(uε − u0)(y) = |ωε |
3∑

i,j=1

∫
ω

(γ1 − γ0)(x)Mij (x)
∂u0

∂xi

(x)
∂N

∂xj

(x, y) dμ(x) + o(|ωε |).

The term is such that |ωε |−1‖o(|ωε |)‖L∞(∂�) converges to zero as ε tends to zero, uniformly
on {g ∈ H−1/2(∂�) :

∫
∂�

g dσ = 0, ‖g‖L2(∂�) � 1}.
The symmetric tensor M is the signature of the inclusion and it is called the polarization
tensor. Later on, we will give more insight of how this tensor can be constructed. The concept
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of polarization tensor appears in various contexts. The term was coined by Polya, Schiffer
and Szegö [21, 22]. Polarization tensors are well known in the theory of homogenization as
the low volume fraction limit of the effective properties of the dilute two phase composites
[16, 17, 19] (see [17] for an extensive list of references).

Explicit formulae for the polarization tensor are available in the case of diametrically
small inclusions, i.e. those inclusions that can be written as ωε = z + εB where z is a point
in � and B is a bounded domain centered at the origin (see [4]). Even in the case of ‘thin’
inclusions, that can be described as small neighborhood of hypersurfaces (a curve in R

2 or a
surface in R

3), the polarization tensor has been explicitly characterized (see [6]).
In this work, we want to consider inclusions that can be represented as small

neighborhood of a line segment in a three-dimensional domain. For these cylindrically shaped
inclusions we give an explicit description of the polarization tensor. This model has many
possible applications, for example in non-destructive testing of materials and in geophysical
prospection. We also want to look at this problem from the point of view of inverse problems.
This approach was initiated by Friedman and Vogelius [12] who first used the polarization
tensor for the detection of small inclusions. After that there have been many significant
developments in this direction. For more information on this subject we refer to recent books
[4, 5] and references therein.

In section 2 we will set up general assumptions and recall the definition of polarization
tensor. In section 3 we will state and prove our main result for cylindrical inclusions. In
section 4 we observe that the asymptotic formula that we derive in section 3 is useful for
the reconstruction of the inclusion from boundary data. In particular we show that boundary
data of the second-order term of the expansion uniquely determine the axis of the cylinder.
Section 5 contains a reconstruction algorithm and some numerical simulations.

2. General assumptions

In all that follows we will assume that our inclusions ωε are contained in a compact set
K0 ⊂ �, with positive distance from ∂�. The Borel measure μ defined by (4) will then be
concentrated on K0.

We will assume that both γ0 and γ1 are smooth functions in � and that, for some positive
constant c0, we have

c0 < γi(x) <
1

c0
, for x ∈ �, i = 0, 1.

The polarization tensor M can be defined in several ways. In [9] it is defined by means of
the following auxiliary problem.

For j = 1, 2, 3, let ej denote the coordinate directions and let v
j
ε ∈ H 1(�) be defined by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

div
(
γε∇v

j
ε

) = div(γ0ej ) in �,

γε

∂v
j
ε

∂n
= γ0nj on ∂�,∫

∂ω

vj
ε dσ = 0,

where nj is the j th component of the unit normal direction n to ∂�.
The tensor M is consistently defined in [9] as the following limit, defined possibly up to

the extraction of a subsequence,
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Figure 1. A cylindrical inclusion. The base of the cylinder ω2,ε has a small area.

∫
ω

Mij (x)φ(x) dμ = lim
ε→0

1

|ωε |
∫

ωε

∂v
j
ε

∂xi

(x)φ(x) dx, (6)

for every smooth function φ.
We shall make use of the alternative equivalent definition ([10]).

Lemma 2.1. Let M be the polarization tensor given by (6) and let φ be a positive smooth
function on �, then, for every direction ξ ∈ R

3,∫
ω

(γ1 − γ0)Mξ · ξφ dμ = 1

|ωε |
∫

ωε

(γ1 − γ0)
γ0

γ1
|ξ |2φ dx

+
1

|ωε | min
w∈H 1(�)

∫
�

γε

∣∣∣∇w + 1ωε

γ1 − γ0

γ1
ξ

∣∣∣2
φ dx + o(1). (7)

where o(1) tends to zero with ε.

3. The polarization tensor for a cylindrical inclusion in R
3

In this work we will consider cylindrical inclusions having fixed height and small basis. For
the sake of simplicity we will fix our coordinate system in the center of the cylinder and the
third coordinate direction (e3) parallel to the axis of the cylinder. We will use the notation
x = (x1, x2, x3). Consider an inclusion ωε given by

ωε = ω2,ε × (−l, l), (8)

where ω2,ε is a bidimensional measurable set. An example of a possible inclusion is sketched
in figure 1. Note that the base of the cylinder can be quite general. We only require the
minimal assumptions given in [9] for the two-dimensional polarization tensor associated with
ω2,ε to be defined.
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Namely, we assume that for each ε, ω2,ε ⊂ D = D(0, r), the disc of radius r is centered
at the origin and that, for some L > l the cylinder K0 = D × [−L,L] is contained in �. We
will also assume that limε→0 |ω2,ε | = 0 and

|ω2,ε |−11ω2,ε
(·) converges in the sense of measure to μ′ when ε → 0.

The Borel measure μ defined in (4) and μ′ are related by∫
K0

ψ dμ = 1

2l

∫ l

−l

∫
D

ψ dμ′dx3, for each ψ ∈ C(K0).

Let γ0 be the smooth conductivity of the material in � and let γ1 	= γ0 be the smooth
conductivity of the inclusion (for sake of generality we assume that both γ0 and γ1 are defined
in the whole body �). The conductivity in the body containing the inclusion is given by (2).

Now let us slice our three-dimensional body in sections that are parallel to the plane
{x3 = 0}. Let us denote by �x3 = {(x1, x2) ∈ R

2 : (x1, x2, x3) ∈ �} each of these slices. Let
us define

γ2,ε(x) = (γ1(x) − γ0(x))1ω2,ε
(x1, x2) + γ0(x).

For x3 ∈ (−l, l) this coefficient represents the conductivity of the slice �x3 . For each x3, there
is a 2 × 2 polarization tensor m(x) that can be defined (as in lemma 2.1) in the following way.

Lemma 3.1. Let φ be a positive smooth function in �. Then, for every direction η ∈ R
2,∫

�x3

(γ1 − γ0)mη · ηφ dμ′ = 1

|ω2,ε |
∫

ω2,ε

(γ1 − γ0)
γ0

γ1
|η|2φ dx1 dx2

+
1

|ω2,ε | min
w∈H 1(�x3 )

∫
�x3

γ2,ε

∣∣∣∇w + 1ω2,ε

γ1 − γ0

γ1
ξ

∣∣∣2
φ dx1 dx2 + o(1) (9)

where o(1) tends to zero with ε.

Note that, although the measure μ′ is the same in each slice, the polarization tensor m may
change because both conductivities γ0 and γ1 depend on x3.

Now, we state and prove the main results of this section.

Proposition 3.2. If ωε is given by (8), the unit vector e3 is an eigenvector for the polarization
tensor M(x),that is,

M(x)e3 · e3 = 1 for μ-almost every x ∈ �. (10)

Since the polarization tensor is symmetric (see [9]), this implies that there are other two
eigenvectors in the orthogonal plane, the one spanned by e1 and e2.

We prove that, in that plane, the polarization tensor coincides with the two-dimensional
tensor.

Proposition 3.3. Let ωε be given by (8) and let m be the two-dimensional polarization tensor
defined by (9). Let η be any direction in R

2, and denote by η∗ its extension η∗ = (η, 0). Then,

M(x)η∗ · η∗ = m(x)η · η for μ-almost every x ∈ �.

In order to prove propositions (3.2) and (3.3) we are going to use definitions (7) and (9) of
polarization tensors. Before doing that, we need to point out a variant of those formulae that
is justified by [10, remark 3.7, p.185]. According to this remark, the minimum in formula (7)
need not be taken over the whole H 1(�), but it can be taken over H 1

0 (�′) for any convex set
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�′ that contains the whole family of inclusions. In our case we can choose �′ = K0. The
same holds in formula (9) where the minimum can be taken over H 1

0 (D).
Let us fix a positive smooth function φ defined in � and, for j = 1, 2, 3, let us denote

by 
j
ε the three-dimensional minimizer in (7) corresponding to ξ = ej . Each minimizer


j
ε ∈ H 1

0 (K0) is solution to

div
(
γεφ∇j

ε

) = div
(
(γ0 − γ1)1ωε

ejφ
)

in K0. (11)

By lemma 6.1 in the appendix, the minimizer 
j
ε satisfies the estimates∥∥∇j

ε

∥∥
L2(K0)

� C|ωε |1/2, for j = 1, 2, 3, (12)

and ∥∥j
ε

∥∥
L2(K0)

� C|ωε |1/2+α, for j = 1, 2, 3, (13)

where the positive constants C and α depend on K0, c0 and φ, but not on ε.
For the bidimensional tensor, we denote by ψ

j
ε , for j = 1, 2, the functions in H 1

0 (D)

defined by

div12
(
γ2,εφ∇12ψ

j
ε

) = div12
(
(γ0 − γ1)1ω2,ε

ejφ
)

in D, (14)

where the notations div12 and ∇12 mean divergence and gradient with respect to the first two
variables only. The third variable plays the role of a parameter. Due to lemma 6.1 in the
appendix these functions satisfies the estimates∥∥∇12ψ

j
ε

∥∥
L2(D)

� C|ω2,ε |1/2, for j = 1, 2, (15)

and ∥∥ψj
ε

∥∥
L2(D)

� C|ω2,ε |1/2+α, for j = 1, 2, (16)

where the positive constants C and α depend on K0, c0 and φ, but not on ε.

Proof of proposition 3.2. As it was noted in [10], it is easy to recover the optimal pointwise
estimates of the polarization tensor M from (7), namely that

min

{
1,

γ0(x)

γ1(x)

}
|ξ |2 � Mij (x)ξiξj � max

{
1,

γ0(x)

γ1(x)

}
|ξ |2,

for every ξ ∈ R
3 and for x μ-almost everywhere in �.

As a consequence, showing (10) will ensure that 1 is either the maximal or minimal
eigenvalue of M, with eigenvector e3.

Let 3
ε be the minimizer corresponding to ξ = e3.

Let us note that 3
ε is a solution of (11) and, by De Giorgi–Nash estimates (see theorem

8.24 in [13]), it is Hölder continuous and, for every x ∈ K1 ⊂⊂ K0∣∣3
ε(x)

∣∣ � C
(∥∥3

ε

∥∥
L2(K0)

+
∥∥1ωε

ψ
∥∥

L4(K0)

)
.

By (13) we deduce that∣∣3
ε(x)

∣∣ � C(|ωε |1/2+α + |ωε |1/4) � C|ωε |1/4. (17)

By definition (11) and integrating by parts,∫
K0

γε

∣∣∇3
ε

∣∣2
φ dx =

∫
ωε

(γ0 − γ1)φe3 · ∇3
ε dx,

=
∫

ω2,ε

∫ l

−l

(γ0 − γ1)φ
∂

∂x3
3

ε dx3 dx1 dx2,

=
[∫

ω2,ε

(γ0 − γ1)φ3
ε dx1 dx2

]x3=l

x3=−l

−
∫

ωε

3
ε

∂

∂x3
((γ0 − γ1)φ) dx. (18)

6



Inverse Problems 25 (2009) 065004 E Beretta et al

By (17) (noting that ω2,ε × [−l, l] ⊂⊂ K0) and since γ0, γ1 and φ are smooth, we get∣∣∣∣∣
[∫

ω2,ε

(γ0 − γ1)φ3
ε dx1 dx2

]x3=l

x3=−l

∣∣∣∣∣ � C|ωε |1/4|ω2,ε | � C

l
|ωε |5/4, (19)

where C does not depend on ε and on l.
In addition, by using Cauchy–Schwarz inequality, and estimate (13) we obtain∣∣∣∣∫

ωε

3
ε(x)

∂

∂x3
((γ0 − γ1)φ) dx

∣∣∣∣ � C|ωε |1+α. (20)

By putting together (18)–(20), we get∫
K0

γε

∣∣∇3
ε |2φ dx � C

∣∣ωε |1+α′
, where α′ = min(1/4, α). (21)

Let us now write formula (7) for ξ = e3∫
ω

(γ1 − γ0)Me3 · e3φ dμ = 1

|ωε |
∫

ωε

(γ1 − γ0)
γ0

γ1
φ dx

+
1

|ωε |
∫

K0

γε

∣∣∣∣∇3
ε + 1ωε

γ1 − γ0

γ1
e3

∣∣∣∣2

φ dx + o(1)

= 1

|ωε |
∫

ωε

(γ1 − γ0)φ dx +
1

|ωε |
∫

K0

γε

∣∣∇3
ε

∣∣2
φ dx

+
2

|ωε |
∫

K0

1ωε

γε(γ1 − γ0)

γ1
φe3 · ∇3

ε dx + o(1). (22)

By Cauchy–Schwarz inequality, and (21)∣∣∣∣ 2

|ωε |
∫

K0

1ωε

γε(γ1 − γ0)

γ1
φe3 · ∇3

ε dx

∣∣∣∣ � C|ωε |α′/2. (23)

By inserting (23) and (21) into (22) we get∫
�

(γ1 − γ0)Me3 · e3φ dμ = 1

|�ε |
∫

ωε

(γ1 − γ0)φ dx + o(1),

and, by letting ε → 0, we get∫
�

(γ1 − γ0)Me3 · e3φ dμ =
∫

�

(γ1 − γ0)φ dμ,

which, in turn, implies (10). �

Proof of proposition 3.3. The idea of the proof comprises constructing an approximation of
the correctors 1

ε and 2
ε by using the two-dimensional correctors ψ1

ε and ψ2
ε defined by (14).

Let fε(x3) be a function of x3 only that we will specify better in lemma 3.6. Let us define,
for j = 1, 2,

̃j
ε (x) = ψj

ε (x)fε(x3) for x ∈ K0. (24)

Our proof will make use of the following technical results:

Lemma 3.4. For j = 1, 2, the functions ψ
j
ε satisfies∥∥∥∥ ∂

∂x3
ψj

ε

∥∥∥∥
L2(K0)

� C|ω2,ε | 1
2 +α, (25)

for some positive C and α independent of ε and of l.

7



Inverse Problems 25 (2009) 065004 E Beretta et al

Lemma 3.5. Let us denote by 1l (x3) = 1(−l,l)(x3). Assume fε ∈ H 1(R) is chosen so that

0 � fε � 1 and fε(x3)1l (x3) = 1l (x3), (26)

‖f ′
ε‖L2(−L,L) � C|ω2,ε |− α

2 , (27)∥∥fε(·)
(
1 − 1l (·)

)∥∥
L2(−L,L)

� C|ω2,ε | α
2 . (28)

Then, for j = 1, 2, the functions ̃
j
ε and 

j
ε , given by (24) and (11), respectively, satisfy the

inequality ∥∥∇(
̃j

ε − j
ε

)∥∥
L2(K0)

� C|ω2,ε | 1+α
2 ,

where C and α are independent of ε.

Lemma 3.6. The function fε given by

fε(x3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x3 < −l − 2|ω2,ε |α
(x3 + l + 2|ω2,ε |α)2

2|ω2,ε |2α
if x3 ∈ [−l − 2|ω2,ε |α,−l − |ω2,ε |α]

1 − (x3 + l)2

2|ω2,ε |2α
if x3 ∈ [−l − |ω2,ε |α,−l]

1 if x3 ∈ [−l, 0],

and such that fε(−x3) = fε(x3), satisfies assumptions (26), (27) and (28).

The proof of lemma 3.6 is safely left to the reader. Lemma 3.4 and lemma 3.5 are proven
below. Let us first proceed with the proof of proposition 3.3.

Let us take η∗ = (η, 0) where η is a unit vector in R
2. Let us consider formula (7) for

ξ = η∗ and with the minimum taken over H 1
0 (K0). We write the minimizer wε = ∑2

j=1 ηj
j
ε

as wε = ∑2
j=1 ηj ̃

j
ε +

∑2
j=1 ηj

(


j
ε − ̃

j
ε

)
and obtain∫

�

(γ1 − γ0)Mη∗ · η∗φ dμ =
∫

�

(γ1 − γ0)
γ0

γ1
φ dμ

+
1

|ωε |
∫

K0

γε

∣∣∣∣∣∣∇
⎛⎝ 2∑

j=1

ηj ̃
j
ε

⎞⎠ +
γ1 − γ0

γ1
1ωε

η∗

∣∣∣∣∣∣
2

φ dx + r1,ε + r2,ε + o(1),

(29)

where we have set

r1,ε = 1

|ωε |
∫

K0

γε

∣∣∣∣∣∣∇
⎛⎝ 2∑

j=1

ηj

(
j

ε − ̃j
ε

)⎞⎠∣∣∣∣∣∣
2

φ dx,

and

r2,ε = 2

|ωε |
∫

K0

γε

⎛⎝∇
⎛⎝ 2∑

j=1

ηj ̃
j
ε

⎞⎠ +
γ1 − γ0

γ1
1ωε

η∗

⎞⎠ · ∇
⎛⎝ 2∑

j=1

ηj

(
j

ε − ̃j
ε

)⎞⎠φ dx.

Let us first show that r1,ε and r2,ε are small. The term r1,ε can be estimated by lemma 3.5, so
that

|r1,ε | � C

|ωε |
2∑

j=1

∥∥∇(
j

ε − ̃j
ε

)∥∥2
L2(K0)

� C

l
|ω2,ε |α.

8



Inverse Problems 25 (2009) 065004 E Beretta et al

For r2,ε , using Cauchy–Schwarz inequality and lemma 3.5, we obtain

|r2,ε | � C

|ωε | |ω2,ε | 1+α
2

∥∥∥∥∥∥∇
⎛⎝ 2∑

j=1

ηj ̃
j
ε

⎞⎠ +
γ1 − γ0

γ1
1ωε

η∗

∥∥∥∥∥∥
L2(K0)

� C

l
|ω2,ε | α−1

2

⎛⎝∥∥∥∥∥∥∇
⎛⎝ 2∑

j=1

ηj ̃
j
ε

⎞⎠∥∥∥∥∥∥
L2(K0)

+ |ωε | 1
2

⎞⎠ .

Let us note that∥∥∇̃j
ε

∥∥
L2(K0)

�
∥∥fε∇12ψ

j
ε

∥∥
L2(K0)

+

∥∥∥∥∥f ′
εψ

j
ε + fε

∂

∂x3
ψj

ε

∥∥∥∥∥
L2(K0)

.

Moreover, by (15) we get

∥∥fε∇12ψ
j
ε

∥∥
L2(K0)

=
(∫ L

−L

∫
D

f 2
ε

∣∣∇12ψ
j
ε

∣∣2
dx1 dx2 dx3

) 1
2

� 2L
∥∥∇12ψ

j
ε

∥∥
L2(D)

� C|ω2,ε | 1
2 ,

by (16) and (27), we obtain∥∥ψj
ε f ′

ε

∥∥
L2(K0)

� C|ω2,ε | 1
2 +α|ω2,ε |− α

2 ,

and, by lemma 3.4∥∥∥∥fε

∂

∂x3
ψj

ε

∥∥∥∥
L2(K0)

� C|ω2,ε | 1
2 +α.

Hence, finally

|r2,ε | � C

l
|ω2,ε | α−1

2
(|ω2,ε | 1

2 + |ωε | 1
2
)

� C|ω2,ε | α
2

1

l
.

Now, we consider the second term of the right-hand-side in (29)

1

|ωε |
∫

K0

γε

∣∣∣∣∣∣∇
⎛⎝∑

j

ηj ̃
j
ε

⎞⎠ +
γ1 − γ0

γ1
1ωε

η∗

∣∣∣∣∣∣
2

φ dx

= 1

|ωε |
∫ l

−l

∫
D

γε

∣∣∣∣∣∣
∑

j

ηj∇12ψ
j
ε fε +

γ1 − γ0

γ1
1ω2,ε

η

∣∣∣∣∣∣
2

φ dx

+
1

|ωε |
∫ L

−L

(1 − 1l (x3))

∫
D

γε

∣∣∣∣∣∣
∑

j

ηj∇12ψ
j
ε fε

∣∣∣∣∣∣
2

φ dx

+
1

|ωε |
∫

K0

γε

⎡⎣ ∂

∂x3

⎛⎝∑
j

ηjψ
j
ε

⎞⎠ fε +
∑

j

ηjψ
j
ε f ′

ε

⎤⎦2

φ dx.

9
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Let us note that, for x3 ∈ (−l, l), fε(x3) = 1 and, by (9),

1

|ωε |
∫ l

−l

∫
D

γε

∣∣∣∣∣∣
∑

j

ηj∇12ψ
j
ε fε +

γ1 − γ0

γ1
1ω2,ε

η

∣∣∣∣∣∣
2

φ dx

= 1

2l|ω2,ε |
∫ l

−l

∫
D

γ2,ε

∣∣∣∣∣∣
∑

j

ηj∇12ψ
j
ε +

γ1 − γ0

γ1
1ω2,ε

η

∣∣∣∣∣∣
2

φ dx

= 1

2l

∫ l

−l

∫
D

(γ1 − γ0)mη · ηφ dμ′dx3 − 1

2l|ω2,ε |
∫ l

−l

∫
ω2,ε

(γ1 − γ0)
γ0

γ1
φ dx + o(1)

=
∫

�

(γ1 − γ0)mη · ηφ dμ −
∫

�

(γ1 − γ0)
γ0

γ1
φ dμ + o(1).

Moreover, by (15) and (28),

1

|ωε |
∫ L

−L

(1 − 1l (x3))

∫
D

γ0

∣∣∣∣∣∣
∑

j

ηj∇12ψ
j
ε fε

∣∣∣∣∣∣
2

φ dx

� C

|ωε |

⎛⎝∑
j

∥∥∇12ψ
j
ε

∥∥2
L2(D)

∥∥(1 − 1l )fε

∥∥2
L2(−L,L)

⎞⎠ � C

l
|ω2,ε |α

and, by lemma 3.4, (16) and (27),

1

|ωε |
∫

K0

γε

⎡⎣ ∂

∂x3

⎛⎝∑
j

ηjψ
j
ε

⎞⎠ fε +
∑

j

ηjψ
j
ε f ′

ε

⎤⎦2

φ dx

� C

|ωε |

(∥∥∥∥ ∂

∂x3
ψj

ε

∥∥∥∥2

L2(K0)

+
∥∥ψj

ε

∥∥2
L2(K0)

∥∥f ′
ε

∥∥2
L2(−L,L)

)

� C

|ωε |
(|ω2,ε |1+2α + |ω2,ε |1+2α|ω2,ε |−α

) = C

l
|ω2,ε |α.

As a result, identity (29) becomes∫
�

(γ1 − γ0)Mη∗ · η∗φ dμ =
∫

�

(γ1 − γ0)mη · ηφ dμ + o(1),

that, passing to the limit for ε → 0, is our thesis.

Remark 3.7. In the proof of proposition 3.3, we underlined the dependence of the estimates
upon l, the macroscopic length of the cylinder. Truly, we make no use of that information.
This is merely a reminder of the fact that our approach cannot be used directly for arbitrary
shapes: when l tends to zero, these estimates become trivial.

Proof of lemma 3.4. Let us fix j = 1 or 2. If we differentiate equation (14) with respect to
x3, we obtain that for each x3,

∂
∂x3

ψ
j
ε satisfies equation

div12

(
γ2,εφ∇12

(
∂

∂x3
ψj

ε

))
= div12

(
∂

∂x3
((γ0 − γ1)φ)1ω2,ε

ej

)
− div12

((
∂

∂x3
(γ2,εφ)

)
∇12ψ

j
ε

)
,

10
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hence we can write
∂

∂x3
ψj

ε = a
j

1,ε + a
j

2,ε,

where for i = 1, 2, the function a
j

i,ε ∈ H 1
0 (D) is the solution of

div12
(
γ2,εφ∇12a

j

i,ε

) = f
j

i,ε in D,

and where

f
j

1,ε = div12

(
1ω2,ε

ej

∂

∂x3
((γ0 − γ1)φ)

)
, f

j

2,ε = −div12

((
∂

∂x3
(γ2,εφ)

)
∇12ψ

j
ε

)
.

We shall show that a
j

i,ε can be bounded as required. Concerning a
j

1,ε , we can rely on
lemma 6.1 to obtain∥∥a

j

1,ε

∥∥
L2(D)

� C|ω2,ε |1/2+α.

Let us now turn to a
j

2,ε . Note that we can write

div12
(
γ2,εφ∇12a

j

2,ε

) = −div12

(
∂

∂x3
(γ2,εφ)∇12ψ

j
ε

)
= −div12

(
(γ2,εφ)

∂

∂x3
(log(γ2,εφ))∇12ψ

j
ε

)
= −div12

(
(γ2,εφ)∇12

(
∂

∂x3
(log(γ2,εφ))ψj

ε

))
+ div12

(
(γ2,εφ)ψj

ε ∇12

(
∂

∂x3
(log(γ2,εφ))

))
.

And this means that

a
j

2,ε = −ψj
ε

∂

∂x3
(log(γ2,εφ)) + bj

ε , (30)

with

div12
(
γ2,εφ∇12b

j
ε

) = div12

(
(γ2,εφ)ψj

ε ∇12

(
∂

∂x3
(log(γ2,εφ))

))
.

By standard energy estimates, and by (16) we can conclude that∥∥∇12b
j
ε

∥∥
L2(D)

� C|ω2,ε | 1
2 +α.

By Poincaré estimates for b
j
ε , by (30) and (16) again, we can conclude that∥∥a

j

2,ε

∥∥
L2(D)

� C|ω2,ε | 1
2 +α. �

Proof of lemma 3.5. By (24) and (14), for j = 1, 2, given any function � ∈ H 1
0 (K0), we

have∫
K0

γεφ∇̃j
ε∇� dx =

∫
K0

γεφ∇(
fεψ

j
ε

)∇� dx

=
∫

K0

γεφfε∇12ψ
j
ε ∇12� dx +

∫
K0

γεφ

(
f ′

εψ
j
ε + fε

∂

∂x3
ψj

ε

)
∂

∂x3
� dx

=
∫

ωε

(γ0 − γ1)φ
∂

∂xj

� dx +
∫

K0

(1 − 1l )γεφfε∇12ψ
j
ε ∇12� dx

+
∫

K0

γεφ

(
f ′

εψ
j
ε + fε

∂

∂x3
ψj

ε

)
∂

∂x3
� dx

11
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while, by (11),∫
K0

γεφ∇j
ε∇� dx =

∫
ωε

(γ0 − γ1)φ
∂

∂xj

� dx

and, hence,∫
K0

γεφ
(∇j

ε − ∇̃j
ε

)∇� dx =
∫

K0

(1 − 1l )γεφfε∇12ψ
j
ε ∇12� dx

+
∫

K0

γεφ

(
f ′

εψ
j
ε + fε

∂

∂x3
ψj

ε

)
∂

∂x3
� dx

from which it follows that∥∥∇j
ε − ∇̃j

ε

∥∥
L2(K0)

�
∥∥∇12ψ

j
ε

∥∥
L2(D)

‖(1 − 1l )fε‖L2(−L,L) +
∥∥f ′

εψ
j
ε

∥∥
L2(K0)

+

∥∥∥∥fε

∂

∂x3
ψj

ε

∥∥∥∥
L2(K0)

� C
(|ω2,ε | 1

2 |ω2,ε | α
2 + |ω2,ε | 1

2 +α|ω2,ε |− α
2 + |ω2,ε | 1

2 +α
)

� C|ω2,ε | 1+α
2 . �

4. Reconstruction of the axis of the cylinder from boundary data of the correction term

Let ωε be a cylinder whose axis is a segment σ ⊂⊂ � and whose basis can be written as
ω2,ε = εω2, where ω2 is a bi-dimensional domain of measure |ω2| = 1.

Denote by m the polarization tensor for εω2 as defined in lemma 3.1. From propositions
3.2 and 3.3, it follows that, for y ∈ ∂�,

(uε − u0)(y) = ε2
∫

σ

(γ1 − γ0)(x)

[
∂u0

∂τ
(x)

∂N

∂τ
(x, y) + m(x)∇̃u0(x) · ∇̃N(x, y)

]
dσx + o(ε2),

where τ is the tangent direction to σ and, for any vector v ∈ R
3 we denote by ṽ = v − (v · τ)τ

the non-tangential part of v.
Let us denote by uσ the function

uσ (y) =
∫

σ

(γ1 − γ0)(x)

[
∂u0

∂τ
(x)

∂N

∂τ
(x, y) + m(x)∇̃u0(x) · ∇̃N(x, y)

]
dσx, (31)

defined for y ∈ �\σ .
In this section we want to address the following problem: do the boundary values of the

correction term uσ uniquely determine the segment σ?
In order to answer to this question let us focus on some properties of this correction term.
First of all we observe that uσ is solution to

div(γ0∇uσ (x)) = 0 for x ∈ � \ σ . (32)

Moreover

γ0
∂uσ

∂n
= 0 on ∂�, (33)

because of the boundary condition on the Neumann function and of the fact that σ is far from
the boundary.

12
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If we integrate by parts in equation (31), and denote by P and Q the endpoints of segment
σ (such that τ = (Q − P)/|Q − P |) we have

uσ (y) = N(Q, y)

(
(γ1 − γ0)

∂u0

∂τ
(Q)

)
− N(P, y)

(
(γ1 − γ0)

∂u0

∂τ
(P )

)
−

∫
σ

N(x, y)
∂

∂τ

(
(γ1 − γ0)

∂u0

∂τ

)
dσx

+
∫

σ

(γ1 − γ0)m(x)∇̃u0(x) · ∇̃N(x, y) dσx. (34)

Although the formulation of the correction term uσ may look similar to the one that was
established for inclusions that are small neighborhood of a curve in the plane (see [1]), we
point out that the correction term given by (34) is singular at every point of the segment σ .
Moreover, as it will be clear from the proof of the following proposition, at the endpoints of
the segment σ , the correction term does not have worse singularities than at the other point of
the segment. This behavior is different from the case studied in [1] where the correction term
presents stronger singularities at the endpoints of the segment than at any other point.

Proposition 4.1. Let γ0 and γ1 be smooth positive functions. Let � be an open subset of
∂� and let σ and σ ′ be two segments strictly contained in �. Let u0 be a smooth solution
to div(γ0∇u0) = 0 in � such that ∇u0 	= 0 in �, and let uσ and uσ ′ be defined by (31) for
segments σ and σ ′ respectively.

If

uσ = uσ ′ on �, (35)

then

σ = σ ′.

Proof. For sake of simplicity, let us carry out the proof in the case of a constant conductivity
γ0. The general case is briefly discussed at the end.

Let w = uσ − uσ ′ . By (32), function w is solution to

div(γ0∇w) = 0 in �\(σ ∪ σ ′).

Moreover, by (33) and (35), w has zero Cauchy data on �, hence, by unique continuation
property

w ≡ 0 on �\(σ ∪ σ ′).

We argue by contradiction and assume that σ 	= σ ′. This means that there is an endpoint,
say P, that belongs to σ but not to σ ′. Of course, this means that there is a segment γ with
endpoint P that belong to σ \σ ′. We fix at P the origin of our coordinate system and we set e3

as the tangent direction τ .
Let v be a direction different from τ . Consider a line s(t) = vt approaching the origin as

t goes to zero. There is a positive number t0 such that s(t) ∈ �\(σ ∪σ ′) for 0 < t < t0, hence

uσ (s(t)) = w(s(t)) + uσ ′(s(t)) = uσ ′(s(t))

is bounded for t ∈ (0, t0), since d(s(t), σ ′) > 0. We want to show that this is a contradiction
to the fact that ∇u0 	= 0.

The Neumann function N can be written as

N(x, y) = �(|x − y|) + h(x, y), (36)

13
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where �(|x − y|) = 1
4πγ0|x−y| and h is a harmonic function in �. By inserting expression (36)

into (34) we have that, for t ∈ (0, t0),

uσ (s(t)) = −(γ1(s(t)) − γ0)
∂u0

∂τ
(s(t))�(|s(t)|) −

∫
σ

∂

∂τ

(
(γ1 − γ0)

∂u0

∂τ

)
�(|x − s(t)|) dσx

+
∫

σ

(γ1 − γ0)m(x)∇̃u0(x) · ∇̃�(x, s(t)) dσx + h̃(t), (37)

where h̃(t) is a bounded function.
Let B0 be a ball centered at the origin with radius R, such that 0 < R < |σ |/2 and

B0 ⊂ K0. Let us estimate the right term of (37).
Let us define v0(x) = (γ1(x) − γ0)∂u0(x)/∂τ . By the regularity assumptions on

u0 ∈ C2(�) and γ1, the function v0 and its derivatives are bounded on K0.
We first consider the first term in (37), which we rewrite in the following form:

− (γ1(s(t)) − γ0)
∂u0

∂τ
(s(t))�(|s(t)|) = −v0(0)�(|s(t)|) − (v0(s(t)) − v0(0))�(|s(t)|).

(38)

Note that the last right-hand side of (38) is bounded for t ∈ (0, t0) due to the regularity of v0.
We now write∫

σ

∂v0

∂τ
(x)�(|x − s(t)|) dσx =

∫
σ\B0

∂v0

∂τ
(x)�(|x − s(t)|) dσx

+
∫

σ∩B0

(
∂v0

∂τ
(x) − ∂v0

∂τ
(0)

)
�(|x − s(t)|) dσx +

∂v0

∂τ
(0)

∫
σ∩B0

�(|x − s(t)|) dσx

: = I1 + I2 + I3 (39)

For x ∈ σ \B0 and t < R/2, it is true that |x − s(t)| � R − t � R/2 and therefore

|I1| � C

R
.

On the other hand, because of the regularity of v0, we can estimate

|I2| � C

∫ R

0

x3[
t2
(
v2

1 + v2
2

)
+ (x3 − tv3)2

]1/2 dx3 � C for t ∈ [0, t0].

The last integral in (39) can be explicitly calculated and estimated by

|I3| � C

∣∣∣∣ln (
R

t

)∣∣∣∣ .
Now, let us turn to the last term in (37). Arguing as before, we divide it into three parts,

but this time we define V0(x) := (γ1 − γ0(x))m(x)∇̃u0(x).∫
σ

V0(x) · ∇̃�(x, s(t)) dσx =
∫

σ\B0

V0(x) · ∇̃�(x, s(t)) dσx

+
∫

σ∩B0

(V0(x) − V0(0)) · ∇̃�(x, s(t)) dσx + V0(0) ·
∫

σ∩B0

∇̃�(x, s(t)) dσx

: = J1 + J2 + J3.

For x ∈ σ \B0 and t < R/2 we have that |x − s(t)| � R − t � R/2 and, hence,

|J1| � C

R2
.

14
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By regularity of V0, we can estimate

|J2| � C

∫ R

0

x3t[
t2
(
v2

1 + v2
2

)
+ (x3 − tv3)2

]3/2 dx3 � C for t ∈ [0, t0].

Now, we evaluate term J3 that contains a singularity of leading order:

J3 = V0(0) ·
∫ R

0

(−v1t,−v2t)[
t2
(
v2

1 + v2
2

)
+ (x3 − tv3)2

]3/2 dx3

= −V0(0) · (v1, v2)(
v2

1 + v2
2

)
⎛⎜⎝ z√

1 + z2

∣∣∣∣
R−v3 t√

v2
1 +v2

2 t

−v3√
v2
1 +v2

2

⎞⎟⎠
= −V0(0) · (v1, v2)(

v2
1 + v2

2

)
t
v3 + O

(
t ln

(
1

t

))
.

Collecting all this estimates we conclude that, for sufficiently small t,

uσ (s(t)) = (γ1(0) − γ0)

⎛⎝−∂u0

∂τ
(0)

C1

t
+ m(0)∇̃u0(0) · (v1, v2)

t

√
v2

1 + v2
2

v3

⎞⎠ + O

(
ln

1

t

)
. (40)

The leading order of remainder term is the contribution of the I3 integral. Since the function
uσ (s(t)) has to be bounded for t ∈ (0, t0) and for any direction v 	= e3, we can choose v3 = 0
in (40) and conclude that

∂u0

∂τ
(0) = ∂u0

∂x3
(0) = 0. (41)

Now let us choose a direction v such that v3 	= 0, and obtain

m(0)∇̃u0(0) · (v1, v2) = 0 for any (v1, v2) ∈ R
2,

which, in turn, implies that

m(0)∇̃u0(0) = 0.

Now, we note that ∇u0(0) = (
∂u0
∂x1

(0), ∂u0
∂x2

(0)
)

and that m(0) is a symmetric and positive
definite tensor, from which, together with (41), it follows that

∇u0(0) = 0

which contradicts our assumptions.
Let us now consider the case of a smooth coefficient γ0. The Neumann function defined

by (5) has the same singularities as the function � (see [18, chapter 1 , section 8]) and the
same estimates can be carried out. �

5. A reconstruction algorithm

In this section, we investigate how the results presented in the previous section can be
translated in a numerical algorithm which would locate a cylindrical inclusion buried inside
a three-dimensional domain. Several algorithms have been developed for that purpose in
two dimensions, see, e.g. [1, 2], and tested numerically [20]. They can be adapted to three
dimensions, and we detail here a variant for our case.
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5.1. Description of the algorithm

To fix ideas, the domain � is the ball BR of radius R centered at the origin. As a particular
case of the one considered in the previous section, we assume the inclusion ωε to be a cylinder
whose axis is the segment σ and whose basis is εω2, where ω2 is a bidimensional domain
of fixed area. Let L denote the length of σ , and τ its tangent direction. The conductivity is
supposed equal to one in �\ωε , and equal to γ1 in ωε .

Let uε
i, i = 1, 2, 3, be the solution of (3) corresponding to the boundary currents

ϕi = ∂xi

∂n
.

The unperturbed solution is ui
0 = xi in BR .

In a first step, we find the direction τ . We compute the power perturbation, namely we
calculate for all i, j ∈ {1, 2, 3}2

δWij =
∫

∂BR

(
uε

i − ui
0

)
φj ds

= |ωε |
∫

�

(1 − γ1)M∇xi · ∇xj dμ + o(|ωε |)

= |ωε |(1 − γ1)Mei · ej + o(|ωε |). (42)

The matrix
(
δWij

)
is symmetric up to numerical errors, so diagonalizing its symmetric part,

we obtain its eigendirections and eigenvalues. The eigenvalues have a constant sign, that of
(1−γ1). If γ1 > 1 (resp. γ1 < 1), the eigenvalue corresponding to the direction τ is the largest
(resp. the smallest) in absolute value. We denote by ν1 and ν2 the other two eigendirections,
forming with τ an orthonormal basis.

In a second step, we find the median plane of the inclusion. By a linear combination, we
compute the solution corresponding to the boundary data ϕτ = τ · n, which is

uε
τ =

3∑
i=1

uε
i · τ i .

We have

δWτ =
∫

∂BR

(
uε

τ − x · τ
)
φτ ds

= |ωε |
(
1 − γ1

)
Mτ · τ + o

(|ωε |
)
.

Consider now the harmonic test function

ψ = 1

2
((x · τ)2 − (x · ν1)

2).

Integrating against uε
τ − x · τ , we obtain

Dψ =
∫

∂BR

(
uε

τ − x · τ
)∂ψ

∂n
ds

= |ωε |
∫

�

(
1 − γ1

)
Mτ · τ

(
x · τ

)
dμ + o

(|ωε |
)

= 1

2
|ωε |(1 − γ1)Mτ · τ((A · τ) + (B · τ)) + o(|ωε |),
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here A and B are the endpoints of segment σ . We therefore can deduce the position of median
plane of σ, xτ = Xm · τ , where Xm is the midpoint of σ .

xτ = Dψ

δWτ

= 1

2
((A · τ) + (B · τ)) + o(1).

In a third step, we find the other coordinates of the midpoint Xm. We now use harmonic test
functions of the form a = |x − a|−1, where a varies in the plate

P1 = {
a = R1τ + αν1 + βν2, with − R � α, β � R

}
,

where R1 > R, the radius of the ball BR . Projected on this plate, the inclusion ωε is a small
disc centered at (α0, β0). Integrating the boundary data uε

τ − x · τ against ∇a · n we obtain

D1(α, β) =
∣∣∣∣∫

∂BR

(
uε

τ − x · τ
)∂a

∂n
ds

∣∣∣∣
= |ωε |

∣∣∣∣∫
�

(1 − γ1)Mτ · ∇a dμ

∣∣∣∣ + o(|ωε |)

= |ωε |
(
1 − γ1

)
Mτ · τ

∣∣∣∣ 1

|A − a| − 1

|B − a|
∣∣∣∣ + o(|ωε |).

Note that D1(α, ·) attains its maximum at (α, β0), and D1(·, β) attains its maximum at (α0, β).
We can therefore find these coordinates by a simple dichotomy, alternating direction at each
step. Fixing α, for β ∈ [βmin, βmax] we restrict the values in an interval of size at most
1
2 (βmax − βmin) by computing values of D1(α, β) at βmin + i

4 (βmax − βmin), i = 1, 2, 3, 4. We
then repeat the procedure with the minimal β found fixed. After n iterations, the size of the
box [αmin, αmax] × [βmin, βmax] is smaller than (2R)2 × 2−n. At the maximal point, we have

D1(α0, β0) = |ωε ||γ1 − 1|Mτ · τ

(
1

R1 − xτ − 1
2L

− 1

R1 − xτ + 1
2L

)
(43)

and the coordinates of the midpoint of σ are Xm = xτ τ + α0ν1 + β0ν2.
Finally, to find the length of the inclusion we repeat this procedure on the plate

P2 = {a = −R2τ + αν1 + βν2, with −R � α, β � R},
where R2 > R, and (−R2 + R1) 	= 2xτ , leading to

D2(α0, β0) = |ωε ||γ1 − 1|Mτ · τ

(
1

R2 + xτ − 1
2L

− 1

R2 + xτ + 1
2L

)
(44)

and finally, compute the length L of σ , from formulae (43)–(44),

L = 2

(
D2(α0, β0)(xτ + R2)

2 − D1(α0, β0)(R1 − xτ )
2

D2(α0, β0) − D1(α0, β0)

)1/2

.

Note that we have not used so far the properties of the polarization tensor. In the direction
τ , we know that Mτ · τ = 1, hence, asymptotically, δWτ · τ = 1 and the eigenvalue λτ

corresponding to the direction τ is asymptotically λτ = |ωε |(1−γ1). If we represent the cross
section of the inclusion by an equivalent ellipse, the other two eigenvalues λ1 and λ2 are given
by the two-dimensional formula (see, e.g. [17, 8]) |ωε |(1 − γ1)

2(r+1)

r+γ1
and |ωε |(1 − γ1)

2(r+1)

rγ1+1 ,
where r is the ratio of the major axis a over the minor axis b of the ellipse. We therefore
extract from (42) that

λ1

λτ

= (r + 1)

r + γ1
+ o(1) and

λ2

λτ

= (r + 1)

1 + rγ1
+ o(1),

which gives in turn r = a/b and γ1. We can then estimate a and b, using λτ = πabL

(γ1 − 1) + o(abL).
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Figure 2. Simulation for a cylinder of revolution. On the left, the mesh used for the simulation
(the volume elements are not represented). On the right, the reconstructed inclusion together with
the original one.

5.2. Numerical simulation for a disc-base cylinder

Numerical simulations are performed using Gmsh and Getfem++ [14, 23]. The domain is a
ball of radius 1.5 centered at the origin.

The inclusion is a rod with a circular cross-section, of radius ε = 1
10

√
π

, and of length
L = 1, with a direction

τ = (sin(π/3) cos(π/4), sin(π/3) sin(π/4), cos(π/3)).

The conductivity in the inclusion is γ1 = 3.
The midpoint is Xm := (xm, ym, zm) ≈ (0.006, 0.506, 0.150).

The three-dimensional mesh has 12625 nodes, and the underlying two-dimensional
mesh is represented in figure 2. We compute the polarization matrix (and we symmetrize
it to reduce numerical errors) 1

2 (δWij + δWji) and we find that its eigenvalues are λ0 =
−1.83777 × 10−2, λ1 = −1.04347 × 10−2 and λ2 = −1.04434 × 10−2. Thus, γ1 > 1
and the first eigenvalue corresponds to the direction of the cylinder. Its eigenvector is
τ̃ = (−0.612494,−0.612253,−0.499998), and |τ̃ + τ | ≈ 2 × 10−4.

The computed median plane abscissa is x̃τ = −0.387759, and |x̃τ + Xm · τ | = 1 × 10−3.
We use R1 = R2 = 1.6, and we find coordinates midpoint of the segment to be

Xm,1 = (0.04, 0.44, 0.19) using the minimization on P1, or Xm,2 = (0.03, 0.47, 0.16)

using the minimization on P2. Since P2 is closer to the inclusion (because xτ < 0), we
should expect this approximation to be the best one. They are however of the same order,
|Xm,2 − Xm| ≈ 5 × 10−2 and |Xm,1 − Xm| ≈ 8 × 10−2.

The data max D1 = 8.82 × 10−3 and max D2 = 2.67 × 10−2 give an estimated length
L̃ = 0.984.

Finally, since λ1 = λ2, it is clear that the equivalent ellipse is a disc: this leads to an
estimation of γ̃1 ≈ 2.5, and of the radius of the disc of ε̃ ≈ 11

100
√

π
.
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Figure 3. Simulation for a cylinder with elliptic cross-section. On the left, the mesh used for the
simulation (the volume elements are not represented). On the right, the reconstructed inclusion
together with the original one.

5.3. Numerical simulation with an ellipse-base cylinder

In this second simulation, the inclusion is a rod with an elliptic cross-section, of major axis
length a = 2

10
√

π
, of minor axis length b = 1

10
√

π
and of length L = 6

5 . The main direction of
the cylinder is τ , the direction of the major axis is ν1 and the direction of the minor axis is ν2

given by

τ =
(

cos
(π

7

)
sin

(
3π

8

)
, sin

(π

7

)
sin

(
3π

8

)
, cos

(
3π

8

))
,

ν1 =
(

− cos
(π

7

)
cos

(
3π

8

)
,− sin

(π

7

)
cos

(
3π

8

)
, sin

(
3π

8

))
,

ν2 =
(
− sin

(π

7

)
, cos

(π

7

)
, 0

)
.

The conductivity in the inclusion is γ = 1
2 .

The midpoint of the inclusion is Xm = (−0.001, 0.041,−0.170). The three-dimensional
mesh has 15306 nodes, and the underlying two-dimensional mesh is represented in figure 3.
We compute the polarization matrix (symmetrized to reduce numerical errors) 1

2 (δWij + δWji)

and we find that its eigenvalues are λ0 = 1.72031 × 10−2, λ1 = 1.22152 × 10−2 and
λ2 = 1.39706 × 10−2, corresponding to the eigenvectors (in columns)⎡⎢⎣0.434006 0.832474 −0.344421

−0.900910 0.400773 −0.166563

−6.2 × 10−4 0.382582 0.923922

⎤⎥⎦ .

Thus, γ1 > 1 and the second eigenvalue corresponds to the direction of the cylinder, the
first one to the minor axis, and the third to the major axis. The error in the main direction
is 2 × 10−4 and in the cross section, it is 8 × 10−4.The computed median plane abscissa is
x̃τ = −0.049244, and |x̃τ − Xm · τ | = 2 × 10−4.
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We use again R1 = R2 = 1.6, and we find the minimum to be Xm,1 = (−0.026,

0.053,−0.128) using the minimization on P1, or Xm,2 = (−0.041, 0.069,−0.111) using
the minimization on P2. They are again of the same order, |Xm,1 − Xm| ≈ 5 × 10−2 and
|Xm,2 − Xm| ≈ 8 × 10−2.

The data D1 = 1.14 × 10−2 and D2 = 9.86 × 10−3 gives an estimated length L = 1.31.

Finally, turning to the polarization tensor, from the ratios λ0/λ1 and λ2/λ1, we obtain
b
a

= 0.43 and γ1 = 0.58, which gives in turn, using λ1 = πa2Lb
a
(1 − γ1), a ≈ 31

100
√

π
and

b ≈ 13
100

√
π

.

5.4. Discussion

From the numerical simulations, we observe that we can recover the location of the inclusions
quite accurately. The error in the estimation of the center of the inclusion, when compared
to the size of the domain is less than 2%. The error on the length of the inclusion is larger
in the case of the ellipse (9%) as the median plane is located close to the middle of the two
projection planes.

The estimation of the contrast is less precise, the error is about 16% for the disc and for
the ellipse, and this in turn introduces compounded errors in the estimation of the length of
the major and minor axes. This could be due to the coarseness of the numerical mesh. But
we suspect that it is also linked to the relatively slow convergence of the first eigenvalue of

1
|ωε |(1−γ1)

δW toward 1, which is an upper asymptotic bound not reached except for infinitely
thin inclusions.

6. Concluding remarks

In this paper we showed that the polarization tensor of cylindrical inclusions can be deducted
from the polarization tensor of cross section orthogonal to the axis of the cylinder. When
conductivity in the background and in the cylinder vary smoothly, the polarization tensor
in every cross section is only a function of the contrast γ1/γ0 in that cross section, and
can be obtained by a two-dimensional calculation. Note that our arguments do not depend
on the dimension, and does not require the base to be of small diameter. For example,
iterating this result between dimension 1 and dimension d, we would recover the polarization
tensor of a flat thin plate, already obtained in [6, 10], from that of a small segment in
dimension 1.

The case of a base of small diameter is new, and we show that it allows us to uniquely
determine the axis of the cylinder from one boundary measurement. We believe that a similar
form of the polarization tensor holds for small neighborhoods of a general smooth curve. In
this case the singularities of the correction term along the curve should be sufficient to be able
to determine the curve itself from the knowledge of boundary data. This will be the subject of
a forthcoming paper.

In the last section of the paper, we verified that these results could be used to find a
cylindrical inclusion with synthetic data. We showed that it is possible to reconstruct quite
accurately the position of a cylinder with circular or elliptical cross section.

Appendix A

Lemma 6.1. [10, 3] Let a ∈ L∞(�) such that c1 < a < c−1
1 for some positive constant c1.

Suppose that φε ∈ H 1
0 (�) is such that
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div
(
a∇φε

) = div
(
Fε

)
in �,

where either

Fε = 1ωε
(x)F0(x) with ‖F0‖L∞(ωε)d � FC,

or Fε = 1ωε
(x)Fε(x) with ‖Fε‖L2(�)d � FC |ωε |1/2.

where FC is a constant independent of ε. Then,

‖∇φε‖L2(�)d � 1√
c1

|ωε |1/2FC,

Furthermore, there exists α > 0 and C > 0, independent on ε, such that

‖φε‖L2(�) � C|ωε | 1
2 +αFC.
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[8] Brühl M, Hanke M and Vogelius M S 2003 A direct impedance tomography algorithm for locating small
inhomogeneities Numer. Math. 93 635–54

[9] Capdeboscq Y and Vogelius M S 2003 A general representation formula for boundary voltage perturbations
caused by internal conductivity inhomogeneities of low volume fraction M2AN Math. Model. Numer. Anal.
37 159–73

[10] Capdeboscq Y and Vogelius M S 2006 Pointwise polarization tensor bounds, and applications to voltage
perturbations caused by thin inhomogeneities Asymptot. Anal. 50 175–204

[11] Cedio-Fengya D J, Moskow S and Vogelius M S 1998 Identification of conductivity imperfections of small
diameter by boundary measurements. continuous dependence and computational reconstruction Inverse
Problems 14 553–95

[12] Friedman A and Vogelius M 1989 Identification of small inhomogeneities of extreme conductivity by boundary
measurements: a theorem on continuous dependence Arch. Rat. Mech. Anal. 105 299–326

[13] Gilbarg D and Trudinger N S 1983 Elliptic Partial Differential Equations of Second Order 2nd edn
(Comprehensive Studies in Mathematics) (Berlin: Springer)

[14] Geuzaine C and Remacle J-F 2009 Gmsh: a three-dimensional finite element mesh generator with built-in pre-
and post-processing facilities Int. J. Numer. Methods Eng. at press

[15] Kozlov V, Maz’ya V and Movchan A 1999 Asymptotic Analysis of Fields in Multi-structures (Oxford
Mathematical Monographs) (Oxford: Oxford University Press)

[16] Lipton R 1993 Inequalities for electric and elastic polarization tensors with applications to random composites
J. Mech. Phys. Solids 41 809–33

[17] Milton G W 2002 The Theory of Composites (Cambridge Monographs on Applied and Computational
Mathematics) (Cambridge: Cambridge University Press)

[18] Miranda C 1970 Partial Differential Equations of Elliptic type Ergebnisse der Mathematik und ihrer
Grenzgebiete, Band 2 (Berlin: Springer)
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